طراحی شبکه عصبی مصنوعی برای پیش بینی نتایج حاملگی در مادران باردار لوپوسی در ایران

Authors

محمود اکبریان

mahmoud akbarian rheumatology research center, tehran university of medical sciences, tehran, iran.مرکز تحقیقات روماتولوژی، دانشگاه علوم پزشکی تهران خدیجه پایدار

khadijeh paydar department of health information management, school of allied medical sciences, tehran university of medical sciences, tehran, iran.گروه مدیریت اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی تهرانن شراره رستم نیاکان کلهری

sharareh r ostam niakan kalhori department of public health, school of public health, ahvaz jundishapur university of medical sciences, ahvaz, iran.گروه بهداشت عمومی، دانشکده بهداشت، دانشگاه علوم پزشکی جندی شاپور اهواز عباس شیخ طاهری

abbas sheikhtaheri yasmi st., valiasr ave., tehran, iran. tel: +98- 21- 88794302تهران، خیابان ولیعصر، بالاتر از ونک، خیابان شهید یاسمی، دانشکده مدیریت و اطلاع رسانی پزشکی تلفن: 88794302 -021

abstract

زمینه و هدف: لوپوس اریتماتوی سیستمیک (sle) بیماری خودایمنی چند سیستمی با تظاهرات متنوع و رفتار متغیر می باشد. بارداری برای زنان با sle به عنوان چالش مطرح است. مشاوره پیش از بارداری به دلیل برآورد ریسک نتایج نامطلوب در مادر و جنین با استفاده از داده های مناسب ضروری است. هدف این مطالعه، طراحی شبکه عصبی مصنوعی برای پیش بینی نتایج حاملگی در زنان باردار لوپوسی بود. روش بررسی: در این بررسی گذشته نگر، 45 متغیر تاثیرگذار در نتایج حاملگی زنان باردار لوپوسی شناسایی شده و پرونده های این بیماران در بیمارستان شریعتی (104 بارداری) و یکی از مراکز خصوصی (45 بارداری) از سال 1360 تا 1392، در مرداد و شهریور ماه سال 1393 بررسی و متغیرهای مورد نظر استخراج گردید. با استفاده از رگرسیون لاجستیک باینری در spss, ver. 20 (chicago, il, usa) متغیرهای تاثیرگذار در نتایج بارداری شناسایی شد. متغیرهای انتخابی به عنوان ورودی شبکه استفاده شد. شبکه پرسپترون چندلایه (multi-layer perceptron, mlp) پیش خور با الگوریتم پس انتشار گرادیان توام مدرج در matlab, ver. r2013b (natick, ma, usa) طراحی و مورد ارزیابی قرار گرفت. برای ارزیابی شبکه از ماتریس کانفیوژن استفاده شد. یافته ها: دوازده متغیر که 05/0>p داشتند به عنوان متغیرهای تاثیرگذار، به همراه 4 متغیر به نسبت تاثیرگذار با 1/0p<، برای پیش بینی نتایج حاملگی در بیماران لوپوسی با استفاده از رگرسیون لاجستیک شناسایی شد. از این 16 متغیر به عنوان ورودی شبکه پرسپترون چند لایه استفاده گردید. صحت، حساسیت و ویژگی بهترین شبکه عصبی طراحی شده در داده های تست به ترتیب 9/90%، 0/80%، 1/94% و در کل داده ها به ترتیب 3/97%، 5/93%، 0/99% بود. نتیجه گیری: با استفاده از فاکتورهای تاثیرگذار شناسایی شده در این مطالعه و استفاده از شبکه پرسپترون چند لایه (mlp) برای پیش بینی سقط خودبه خودی جنین و نوزاد سالم، می توان به درستی، پیامد بارداری در زنان لوپوسی را پیش بینی نمود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

طراحی شبکه عصبی مصنوعی برای پیش‌بینی نتایج حاملگی در مادران باردار لوپوسی در ایران

Background: Pregnancy in women with systemic lupus erythematosus (SLE) is still introduced as a major challenge. Consulting before pregnancy in these patients is essential in order to estimating the risk of undesirable maternal and fetal outcomes by using appropriate information. The purpose of this study was to develop an artificial neural network for prediction of pregnancy outcomes including...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

ارزیابی مدل هیبرید شبکه عصبی مصنوعی-پانل دیتا در پیش بینی قیمت صادرات خشکبار ایران

در بسیاری از مطالعات برای پیش بینی متغیرهای اقتصادی اغلب از روش های کمی مبتنی بر داده های سری زمانی یا مقطع زمانی استفاده می شود. مطالعات سری زمانی و مقطع زمانی ناهمگنی کشورها را کنترل نمی کنند و همواره ریسک به دست آورن نتایج و پیش بینی های اریب دار وجود دارد. داده های پانل اطلاعات و درجه آزادی بیشتری را فراهم می آورد که این امر موجب حصول نتایج و پیش بینی های دقیق تری می شود. با توجه به سهم قاب...

full text

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

full text

My Resources

Save resource for easier access later


Journal title:
مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران

جلد ۷۳، شماره ۴، صفحات ۲۵۱-۲۵۹

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023